
 

 

 
 

 

APPLYING MACHINE LEARNING TO LABORATORY DATA: PREDICTING 
SUPPRESSION OF NEXT HIV VIRAL LOAD IN SOUTH AFRICA 

 

 

Background 

During 2018, South Africa was estimated to have more 
than seven million people living with HIV1, representing 
the largest single country epidemic2 and treatment 
program. 3 In September 2016, the National 
Department of Health revised its treatment guidelines 
to extend the availability of ART to all people living with 
HIV, irrespective of CD4 cell count and stage of disease3. 
This policy, widely referred to as “treat all” or “universal 
test and treat” (UTT) holds promise to offer substantial 
advancements not only in the health of those living with 
HIV 4-5, but also in the country’s efforts to meet 95-95-
95 targets. However, implementation of a policy like 
UTT requires a rapid scale-up and expansion of the ART 
program on a country-wide level; a shift that is often 
challenging in these settings. By expanding eligibility, 
UTT has eliminated “pre-ART” care for most patients.6 In 
many cases, this translates into more rapid initiation of 
ART with fewer required clinic visits prior to dispensing 
drugs. In many cases, the pre-ART care cascade is 
compressed into a single visit with same day initiation 
(SDI) of treatment. Though this increases uptake of ART, 
retention of new patients may have suffered.  The 
problem of patient loss to follow-up (LTFU) within the 
public sector in South Africa has been well 
documented.7 The potential for improved health 
through expanded ART availability will only be realized if 
individuals sustain engagement in HIV care.  

 
Figure 1: SA HIV care cascade, 2018 (avert.org) 
 
To optimize South Africa’s HIV response and reach 
targets of 95% tested, 95% treated, and 95% virally 
suppressed, numbers of patients initiating and 
successfully maintaining viral suppression on 
antiretroviral therapy must increase. In 2018, just 53% 
of people living with HIV (PLWH) in South Africa were 
virally suppressed.1 While much effort and resources 
have been focused on tracing those LTFU and returning 
them to care, very little prior work has successfully 
addressed identifying those most at risk of poor  
treatment outcomes while still engaged in care. 

 
Methods  

We applied machine learning and modelling algorithms 
developed by Palindrome, data science implementers, 
(https://www.palindromedata.com) to de-identified HIV 
programmatic data collected from public sector 
treatment facilities based in two districts supported by 
Right to Care between 2015 and 2019. We included 
data for patients all patients who had accessed HIV 
care, initiated treatment and were retained through to 
virologic monitoring. HIV viral load (VL) suppression at 
next VL test was selected as primary outcome as it is an 
established clinical treatment outcome and objectively 
defined (diagnostically measurable reading) and thus 
made for a good target outcome to build confidence 
around the approach. High (>1000) Viral Loads that 
followed shortly (<6 months) after a previously high 
Viral Load were excluded from analyses due to the high 

probability of also being high. 

Figure 2: Framework for modelling compound effects 

 
As the likelihood of viral load suppression is impacted 
by multiple components of the patient’s treatment 
journey (Figure 2), demographic, clinical, behavioral 
(e.g. visit patterns) and laboratory data were 
investigated as potential predictor variables of VL result 
at next visit. Multiple models were created using 
various combinations of predictor variables and 
classification algorithms. These were then tested 
against unseen data to identify the optimal balance 
between predictive power and implementation 
feasibility. The final models were built using a random 
forest classifier and combined features. Models were 
evaluated using receiver operating characteristic (ROC) 
curves which assess the performance of each model’s 
predictions against a test set of unseen data with known 
outcomes. The area under the curve (AUC) measures 
how well a variable can classify into two groups – in this 
case VL suppressed or unsuppressed. AUC values range 
between 0.5 (poor classifier) and 1.0 (excellent 
classifier). 
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Results  

We included data on 688,614 VL results, during the 
study period 1 January 2016 – July 2019. We tested >50 
potential input features per patient in 7 different 
models using multiple combinations of input features 
and classification algorithms. Each model was tested 
against unseen data to identify optimal predictive 
performance. Model results ranged from AUC of 0.57 
for the poorest performing model (included gender and 
age at ART start only) to an AUC of 0.739 for the best 
performing model (Figure 3). Practically, this means the 
model correctly anticipated whether the VL result at 
next test would be suppressed or unsuppressed in 
approximately 3 out of 4 patients. The model 
consistently achieved an accuracy of 75% per month 
over the most recent months of patient data in 2019 
suggesting it is both historically accurate but also 
relevant to patients currently accessing care. 

Figure 3. ROC curve for final model 

Several patient characteristics were found to contribute 
a larger importance in the Random Forest model in 
terms of predicting their risk of having an unsuppressed 
VL at next visit (Figure 4). These included: age at ART 
initiation, most recent VL result value, time on ART, 
pattern of previous missed visits and month they 
accessed treatment. As a reminder, the Random Forest 
method observes the correlation of these features in 
combination – as such the figure should be read as a 
group, rather than an ordered list of priority or 
individual causation. 

Figure 4. The top 11 features with largest predictive 
importance in final model, from the original 50 

 

 

Policy relevance 

As South Africa increases efforts towards 95-95-95 
goals, knowing which patients require additional 
services and interventions in order to achieve successful 
treatment outcomes at each step of the cascade is 
critical. Our model was able to effectively separate high-
risk from low-risk patients using a combination of 
clinical, laboratory and behavioral (visit patterns) data. 
Early detection of patients at high risk of becoming 
virologically unsuppressed has implications not only for 
the individual patient’s health, but also for the risk of 
onward transmission of the virus and impact on 
breaking transmission chains. Potential operational 
application of these results could include the ability to 
score patients into risk categories at each visit and 
triage their care accordingly – high risk patients get 
prioritized to receive intensive intervention at point of 
care while low risk patients are expedited through the 
visit. On-going work will also continue to develop the 
model and explore other predicted outcomes such as 
risk of disengaging from care at next scheduled visit. 

Leveraging predictive models to better understand the 
risk of individuals will allow for health care services to 
better triage patients, improving efficiency and resource 
utilization. By prioritizing those most at-risk, clinics can 
realize better health outcomes without additional 
investments in data collection and staff. Moreover, by 
anticipating future issues before any visible signs are 
present (e.g. an unsuppressed VL), clinics can intervene 
pro-actively while patients are still accessible, engaged 
in health services and provide targeted services earlier.  
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